class MontePythonLike::Likelihood_sd
[No description available]
Inherits from MontePythonLike.Likelihood, object
Public Functions
Name | |
---|---|
def | init(self self, path path, data data, command_line command_line) |
def | eval_spinning_dust(self self, lognu lognu, lognu_p lognu_p) |
def | eval_co_integrated(self self, lognu lognu) |
def | loglkl(self self, cosmo cosmo, data data) |
def | compute_lkl(self self, sd sd, cosmo cosmo, data data) |
Public Attributes
Additional inherited members
Public Functions inherited from MontePythonLike.Likelihood
Name | |
---|---|
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
Public Attributes inherited from MontePythonLike.Likelihood
Name | |
---|---|
name | |
folder | |
data_directory | |
default_values | |
need_update | |
use_nuisance | |
nuisance | |
path | |
dictionary |
Public Functions Documentation
function init
def __init__(
self self,
path path,
data data,
command_line command_line
)
Reimplements: MontePythonLike::Likelihood::init
It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.
If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.
Parameters
----------
data : class
Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
NameSpace containing the command line arguments```
### function eval_spinning_dust
def eval_spinning_dust( self self, lognu lognu, lognu_p lognu_p )
### function eval_co_integrated
def eval_co_integrated( self self, lognu lognu )
### function loglkl
def loglkl( self self, cosmo cosmo, data data )
**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/darkbit/classes/classmontepythonlike_1_1likelihood/#function-loglkl)
Placeholder to remind that this function needs to be defined for a new likelihood.
Raises
NotImplementedError```
function compute_lkl
def compute_lkl(
self self,
sd sd,
cosmo cosmo,
data data
)
Public Attributes Documentation
variable noise_from_file
noise_from_file;
Noise spectrum.
variable noise_file
noise_file;
variable detector_bin_number
detector_bin_number;
variable detector_nu_min
detector_nu_min;
variable detector_nu_max
detector_nu_max;
variable nu_range
nu_range;
variable noise_Ic
noise_Ic;
variable Ic_fid
Ic_fid;
variable fid_values_exist
fid_values_exist;
variable spinning_dust_file
spinning_dust_file;
variable spinning_dust_lognup_data
spinning_dust_lognup_data;
variable spinning_dust_lognup_0
spinning_dust_lognup_0;
variable spinning_dust_lognu_0
spinning_dust_lognu_0;
variable spinning_dust_lognumin
spinning_dust_lognumin;
variable spinning_dust_lognumax
spinning_dust_lognumax;
variable spinning_dust_logT_brightness
spinning_dust_logT_brightness;
variable co_integrated_file
co_integrated_file;
variable co_integrated_lognu_min
co_integrated_lognu_min;
variable co_integrated_lognu_max
co_integrated_lognu_max;
variable co_integrated_logInu
co_integrated_logInu;
Updated on 2022-08-03 at 12:58:02 +0000