class MontePythonLike::Likelihood_mock_cmb

[No description available]

Inherits from MontePythonLike.Likelihood, MontePythonLike.Likelihood, object

Public Functions

Name
definit(self self, path path, data data, command_line command_line)
defloglkl(self self, cosmo cosmo, data data)
defcompute_lkl(self self, cl cl, cosmo cosmo, data data)
definit(self self, path path, data data, command_line command_line)
defloglkl(self self, cosmo cosmo, data data)
defcompute_lkl(self self, cl cl, cosmo cosmo, data data)

Public Attributes

Name
noise_from_file
Noise spectrum.
noise_T
noise_P
Nldd
no_small_l_pol
l_max_TT
Bmodes
implementation of default settings for flags describing the likelihood: #
delensing
LensingExtraction
neglect_TD
unlensed_clTTTEEE
ExcludeTTTEEE
noise_delensing
Delensing noise: implemented by S.
index_B
Read data for TT, EE, TE, [eventually BB or phi-phi, phi-T] #.
index_pp
index_tp
Cl_fid
fid_values_exist

Additional inherited members

Public Functions inherited from MontePythonLike.Likelihood

Name
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)

Public Attributes inherited from MontePythonLike.Likelihood

Name
name
folder
data_directory
default_values
need_update
use_nuisance
nuisance
path
dictionary

Public Functions inherited from MontePythonLike.Likelihood

Name
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)

Public Attributes inherited from MontePythonLike.Likelihood

Name
name
folder
data_directory
default_values
need_update
use_nuisance
nuisance
path
dictionary

Public Functions Documentation

function init

def __init__(
    self self,
    path path,
    data data,
    command_line command_line
)

Reimplements: MontePythonLike::Likelihood::init

It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.

Parameters
----------
data : class
    Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
    NameSpace containing the command line arguments```


### function loglkl

def loglkl( self self, cosmo cosmo, data data )



**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function-loglkl)




Placeholder to remind that this function needs to be defined for a new likelihood.

Raises

NotImplementedError```

function compute_lkl

def compute_lkl(
    self self,
    cl cl,
    cosmo cosmo,
    data data
)

function init

def __init__(
    self self,
    path path,
    data data,
    command_line command_line
)

Reimplements: MontePythonLike::Likelihood::init

It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.

Parameters
----------
data : class
    Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
    NameSpace containing the command line arguments```


### function loglkl

def loglkl( self self, cosmo cosmo, data data )



**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function-loglkl)




Placeholder to remind that this function needs to be defined for a new likelihood.

Raises

NotImplementedError```

function compute_lkl

def compute_lkl(
    self self,
    cl cl,
    cosmo cosmo,
    data data
)

Public Attributes Documentation

variable noise_from_file

noise_from_file;

Noise spectrum.

variable noise_T

noise_T;

variable noise_P

noise_P;

variable Nldd

Nldd;

variable no_small_l_pol

no_small_l_pol;

variable l_max_TT

l_max_TT;

variable Bmodes

Bmodes;

implementation of default settings for flags describing the likelihood: #

variable delensing

delensing;

variable LensingExtraction

LensingExtraction;

variable neglect_TD

neglect_TD;

variable unlensed_clTTTEEE

unlensed_clTTTEEE;

variable ExcludeTTTEEE

ExcludeTTTEEE;

variable noise_delensing

noise_delensing;

Delensing noise: implemented by S.

Clesse #

variable index_B

index_B;

Read data for TT, EE, TE, [eventually BB or phi-phi, phi-T] #.

variable index_pp

index_pp;

variable index_tp

index_tp;

variable Cl_fid

Cl_fid;

variable fid_values_exist

fid_values_exist;

Updated on 2022-08-03 at 12:57:54 +0000