class MontePythonLike::Likelihood_mpk
[No description available]
Inherits from MontePythonLike.Likelihood, MontePythonLike.Likelihood, object
Public Functions
Name | |
---|---|
def | init(self self, path path, data data, command_line command_line, common common =False, common_dict common_dict ={}) |
def | a2maxpos(self self, a1val a1val) |
def | a2min1pos(self self, a1val a1val) |
def | a2min2pos(self self, a1val a1val) |
def | a2min3pos(self self, a1val a1val) |
def | a2minfinalpos(self self, a1val a1val) |
def | a2minneg(self self, a1val a1val) |
def | a2max1neg(self self, a1val a1val) |
def | a2max2neg(self self, a1val a1val) |
def | a2max3neg(self self, a1val a1val) |
def | a2maxfinalneg(self self, a1val a1val) |
def | testa1a2(self self, a1val a1val, a2val a2val) |
def | add_common_knowledge(self self, common_dictionary common_dictionary) |
def | loglkl(self self, cosmo cosmo, data data) |
def | remove_bao(self self, k_in k_in, pk_in pk_in) |
def | init(self self, path path, data data, command_line command_line, common common =False, common_dict common_dict ={}) |
def | a2maxpos(self self, a1val a1val) |
def | a2min1pos(self self, a1val a1val) |
def | a2min2pos(self self, a1val a1val) |
def | a2min3pos(self self, a1val a1val) |
def | a2minfinalpos(self self, a1val a1val) |
def | a2minneg(self self, a1val a1val) |
def | a2max1neg(self self, a1val a1val) |
def | a2max2neg(self self, a1val a1val) |
def | a2max3neg(self self, a1val a1val) |
def | a2maxfinalneg(self self, a1val a1val) |
def | testa1a2(self self, a1val a1val, a2val a2val) |
def | add_common_knowledge(self self, common_dictionary common_dictionary) |
def | loglkl(self self, cosmo cosmo, data data) |
def | remove_bao(self self, k_in k_in, pk_in pk_in) |
Public Attributes
Additional inherited members
Public Functions inherited from MontePythonLike.Likelihood
Name | |
---|---|
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
Public Attributes inherited from MontePythonLike.Likelihood
Name | |
---|---|
name | |
folder | |
data_directory | |
default_values | |
need_update | |
use_nuisance | |
nuisance | |
path | |
dictionary |
Public Functions inherited from MontePythonLike.Likelihood
Name | |
---|---|
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
def | raise_fiducial_model_err(self self) |
def | read_from_file(self self, path path, data data, command_line command_line) |
def | get_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | get_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1) |
def | need_cosmo_arguments(self self, data data, dictionary dictionary) |
def | read_contamination_spectra(self self, data data) |
def | add_contamination_spectra(self self, cl cl, data data) |
def | add_nuisance_prior(self self, lkl lkl, data data) |
def | computeLikelihood(self self, ctx ctx) |
Public Attributes inherited from MontePythonLike.Likelihood
Name | |
---|---|
name | |
folder | |
data_directory | |
default_values | |
need_update | |
use_nuisance | |
nuisance | |
path | |
dictionary |
Public Functions Documentation
function init
def __init__(
self self,
path path,
data data,
command_line command_line,
common common =False,
common_dict common_dict ={}
)
Reimplements: MontePythonLike::Likelihood::init
It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.
If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.
Parameters
----------
data : class
Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
NameSpace containing the command line arguments```
### function a2maxpos
def a2maxpos( self self, a1val a1val )
### function a2min1pos
def a2min1pos( self self, a1val a1val )
### function a2min2pos
def a2min2pos( self self, a1val a1val )
### function a2min3pos
def a2min3pos( self self, a1val a1val )
### function a2minfinalpos
def a2minfinalpos( self self, a1val a1val )
### function a2minneg
def a2minneg( self self, a1val a1val )
### function a2max1neg
def a2max1neg( self self, a1val a1val )
### function a2max2neg
def a2max2neg( self self, a1val a1val )
### function a2max3neg
def a2max3neg( self self, a1val a1val )
### function a2maxfinalneg
def a2maxfinalneg( self self, a1val a1val )
### function testa1a2
def testa1a2( self self, a1val a1val, a2val a2val )
### function add_common_knowledge
def add_common_knowledge( self self, common_dictionary common_dictionary )
Add to a class the content of a shared dictionary of attributes
The purpose of this method is to set some attributes globally for a Pk likelihood, that are shared amongst all the redshift bins (in WiggleZ.data for instance, a few flags and numbers are defined that will be transfered to wigglez_a, b, c and d```
function loglkl
def loglkl(
self self,
cosmo cosmo,
data data
)
Reimplements: MontePythonLike::Likelihood::loglkl
Placeholder to remind that this function needs to be defined for a
new likelihood.
Raises
------
NotImplementedError```
### function remove_bao
def remove_bao( self self, k_in k_in, pk_in pk_in )
### function __init__
def init( self self, path path, data data, command_line command_line, common common =False, common_dict common_dict ={} )
**Reimplements**: [MontePythonLike::Likelihood::__init__](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function---init--)
It copies the content of self.path from the initialization routine of
the :class:Data <data.Data>
class, and defines a handful of useful
methods, that every likelihood might need.
If the nuisance parameters required to compute this likelihood are not defined (either fixed or varying), the code will stop.
Parameters
data : class
Initialized instance of :class:Data <data.Data>
command_line : NameSpace
NameSpace containing the command line arguments```
function a2maxpos
def a2maxpos(
self self,
a1val a1val
)
function a2min1pos
def a2min1pos(
self self,
a1val a1val
)
function a2min2pos
def a2min2pos(
self self,
a1val a1val
)
function a2min3pos
def a2min3pos(
self self,
a1val a1val
)
function a2minfinalpos
def a2minfinalpos(
self self,
a1val a1val
)
function a2minneg
def a2minneg(
self self,
a1val a1val
)
function a2max1neg
def a2max1neg(
self self,
a1val a1val
)
function a2max2neg
def a2max2neg(
self self,
a1val a1val
)
function a2max3neg
def a2max3neg(
self self,
a1val a1val
)
function a2maxfinalneg
def a2maxfinalneg(
self self,
a1val a1val
)
function testa1a2
def testa1a2(
self self,
a1val a1val,
a2val a2val
)
function add_common_knowledge
def add_common_knowledge(
self self,
common_dictionary common_dictionary
)
Add to a class the content of a shared dictionary of attributes
The purpose of this method is to set some attributes globally for a Pk
likelihood, that are shared amongst all the redshift bins (in
WiggleZ.data for instance, a few flags and numbers are defined that
will be transfered to wigglez_a, b, c and d```
### function loglkl
def loglkl( self self, cosmo cosmo, data data )
**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function-loglkl)
Placeholder to remind that this function needs to be defined for a new likelihood.
Raises
NotImplementedError```
function remove_bao
def remove_bao(
self self,
k_in k_in,
pk_in pk_in
)
Public Attributes Documentation
variable use_halofit
use_halofit;
variable use_sdssDR7
use_sdssDR7;
variable k_size
k_size;
variable mu_size
mu_size;
variable k
k;
variable kh
kh;
variable use_giggleZ
use_giggleZ;
variable use_giggleZPP0
use_giggleZPP0;
variable k_fid_size
k_fid_size;
variable fiducial_SDSSDR7_nlratio
fiducial_SDSSDR7_nlratio;
variable has_regions
has_regions;
variable num_regions
num_regions;
variable num_regions_used
num_regions_used;
variable used_region
used_region;
variable n_size
n_size;
variable window
window;
variable P_obs
P_obs;
variable P_err
P_err;
variable use_covmat
use_covmat;
variable use_invcov
use_invcov;
variable invcov
invcov;
variable P_fid
P_fid;
variable k_fid
k_fid;
variable zerowindowfxn
zerowindowfxn;
variable zerowindowfxnsubtractdat
zerowindowfxnsubtractdat;
variable zerowindowfxnsubtractdatnorm
zerowindowfxnsubtractdatnorm;
variable a1list
a1list;
variable a2list
a2list;
variable fiducial_SDSSDR7
fiducial_SDSSDR7;
Updated on 2022-08-03 at 12:57:54 +0000