class MontePythonLike::Likelihood_newdat

[No description available]

Inherits from MontePythonLike.Likelihood, MontePythonLike.Likelihood, object

Public Functions

Name
definit(self self, path path, data data, command_line command_line)
defloglkl(self self, cosmo cosmo, data data)
defcompute_lkl(self self, cl cl, cosmo cosmo, data data)
definit(self self, path path, data data, command_line command_line)
defloglkl(self self, cosmo cosmo, data data)
defcompute_lkl(self self, cl cl, cosmo cosmo, data data)

Public Attributes

Name
calib_uncertainty
has_beam_uncertainty
has_xfactors
obs
var
beam_error
has_xfactor
xfactor
num_points
inv_covmat
win_min
win_max
has_pol
window
halfsteps
margeweights
margenorm
l_max
nuisance
use_nuisance
lkl

Additional inherited members

Public Functions inherited from MontePythonLike.Likelihood

Name
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)

Public Attributes inherited from MontePythonLike.Likelihood

Name
name
folder
data_directory
default_values
need_update
path
dictionary

Public Functions inherited from MontePythonLike.Likelihood

Name
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)
defraise_fiducial_model_err(self self)
defread_from_file(self self, path path, data data, command_line command_line)
defget_cl(self self, cosmo cosmo, l_max l_max =-1)
defget_unlensed_cl(self self, cosmo cosmo, l_max l_max =-1)
defneed_cosmo_arguments(self self, data data, dictionary dictionary)
defread_contamination_spectra(self self, data data)
defadd_contamination_spectra(self self, cl cl, data data)
defadd_nuisance_prior(self self, lkl lkl, data data)
defcomputeLikelihood(self self, ctx ctx)

Public Attributes inherited from MontePythonLike.Likelihood

Name
name
folder
data_directory
default_values
need_update
path
dictionary

Public Functions Documentation

function init

def __init__(
    self self,
    path path,
    data data,
    command_line command_line
)

Reimplements: MontePythonLike::Likelihood::init

It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.

Parameters
----------
data : class
    Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
    NameSpace containing the command line arguments```


### function loglkl

def loglkl( self self, cosmo cosmo, data data )



**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function-loglkl)




Placeholder to remind that this function needs to be defined for a new likelihood.

Raises

NotImplementedError```

function compute_lkl

def compute_lkl(
    self self,
    cl cl,
    cosmo cosmo,
    data data
)

function init

def __init__(
    self self,
    path path,
    data data,
    command_line command_line
)

Reimplements: MontePythonLike::Likelihood::init

It copies the content of self.path from the initialization routine of
the :class:`Data <data.Data>` class, and defines a handful of useful
methods, that every likelihood might need.

If the nuisance parameters required to compute this likelihood are not
defined (either fixed or varying), the code will stop.

Parameters
----------
data : class
    Initialized instance of :class:`Data <data.Data>`
command_line : NameSpace
    NameSpace containing the command line arguments```


### function loglkl

def loglkl( self self, cosmo cosmo, data data )



**Reimplements**: [MontePythonLike::Likelihood::loglkl](/documentation/code/main/classes/classmontepythonlike_1_1likelihood/#function-loglkl)




Placeholder to remind that this function needs to be defined for a new likelihood.

Raises

NotImplementedError```

function compute_lkl

def compute_lkl(
    self self,
    cl cl,
    cosmo cosmo,
    data data
)

Public Attributes Documentation

variable calib_uncertainty

calib_uncertainty;

variable has_beam_uncertainty

has_beam_uncertainty;

variable has_xfactors

has_xfactors;

variable obs

obs;

variable var

var;

variable beam_error

beam_error;

variable has_xfactor

has_xfactor;

variable xfactor

xfactor;

variable num_points

num_points;

variable inv_covmat

inv_covmat;

variable win_min

win_min;

variable win_max

win_max;

variable has_pol

has_pol;

variable window

window;

variable halfsteps

halfsteps;

variable margeweights

margeweights;

variable margenorm

margenorm;

variable l_max

l_max;

variable nuisance

nuisance;

variable use_nuisance

use_nuisance;

variable lkl

lkl;

Updated on 2022-08-03 at 12:57:54 +0000